The thought entered my mind that perhaps price, place, and promotion weren't the only lessons to master. But I did redesign the product, too, in search of the right equation. Still, all of my attempts had failed. I had been blinded by my own dogged perseverance, causing me to fail the most crucial lesson of all. But what could that lesson be? I strained to find the answer, but it seemed time had run out. Then it was confirmed: offers for additional financial backing from my investor, representation, and free trade shows ceased, and with them my excitement and enthusiasm. I'd all but given up and others already had. What consumed me these days was how to explain to my friends, family and readers of my resume that I had lost six figures developing "pie-in-the-sky" inventions. I became seriously discouraged and as stressed as I'd ever been. I got in the habit of bringing a bath towel to bed with me so when I awoke during most nights, drenched in a cold sweat, I would have something to dry off with. Those around me sensed disaster and distanced themselves from me. Early into the invention project I ended a long-term relationship with my girlfriend who cringed at the amount of money I was spending and constantly reminded me of it. I couldn't tolerate her incessantly nagging me. She really thought I wasn't in my right mind. Even my friends lost patience with the never-ending saga. This inventing business was exacting a heavy toll, and I couldn't decide which was worse, flange installing or my invention project-"the disease or the cure."
Haunted by the memory of all the rejections during the last year and a half, I strained to find meaning at the last tradeshow as I demonstrated the last flange tool design. I was asked the same question for the nth timeby the nth tradesman-"why do they make the flanges like that?" We agreed that the flange design was questionable, but I sensed that he didn't think my tool concepts were the solution to the problem. Then I had a flash of insight, more importantly, a renewed perspective. My attention centered on the initial design options David and I had discussed at our first meeting. One design was of a flange with a hexagonal-shaped tightening surface. This was the turning point where I realized that I had veered down the wrong path by developing the flange tool of the same shape. A new flange design would offer the Reps and wholesalers a new utility that I was sure they could sell, as it would solve the installation problem for the tradesmen, and allow them to pass on the cost to their customer. My hope was rejuvenated.
I envisioned becoming successful with the first new circulator flange in as many as fifty years. Only now a shadow loomed over it, threatening it in its infancy. My investor surprised me by saying "No more, John!" She had often exclaimed, "Your inventions are all tinker toys!" To her I had also become the boy who cried wolf. I felt this time was different, just as in the tale of the boy and the wolf. Truthfully, I think she knew it, too. She was just being firm in her opposition to spend more money, merely out of principle.
Mary had considered using her 100-acre farm as collateral against a loan to my business early on. She had been ready to bet the farm-literally-but now was far from that liberal way of thinking. I felt hopeless, knowing she had already spent the money from the sale of her house where I had made the original service call roughly a year earlier. She had stayed with me for a year and 30 failed designs, I couldn't expect anything more. I could have begged her, but I had never asked her for money - she had just always known when to contribute in this way. And what if this idea failed too? Mary was 78 then, and her best friend since college had nicknamed her "CW", short for Crazy Woman, many years earlier. Exactly why I'm not certain, but it seems she took a risk in the past, and lost, with some sort of refrigeration business, and I didn't want to give her friend more fodder. Nevertheless, I persisted in explaining the significance of this latest discovery to her from as many angles as seemed relevant. I realized the simplest solutions often are the best ones. And I had to convince her that this flange was my best one. Thankfully, I found several people in the industry to corroborate my belief that I really had invented a "winner" this time around. It was then that I knew I was right. Finally, she believed the flange was a good idea and invested even more money.
I met with David once again and revisited the sketch of the tool/flange that we had made years earlier. We modified the design to include an octagon shaped nut that could be easily gripped by an ordinary wrench. The only significant difference between the flange tool and the new flange was that the tool had a hexagonal nut. It was so simple, like a Post It NoteÒ. The prior art suggested that nobody had done this with a circulator flange before, so I applied for as many design and utility patents as my lawyer and I could think of. At that time I conjured up nearly 70 ideas for a range of flange designs.
I completed development on four of the designs in a month. It took just a few phone calls, and in an instant I was back on track. Once again the president of the local supply house offered his advice: 'Call the executive vice president of marketing at a Rep firm, Emerson-Swan, Inc., in Massachusetts and ask him what he thinks about the flange.' This firm represented a Rhode Island company, Taco, Inc., a manufacturer of "hydronic" components including circulators and flanges. Taco was the market leader in the region and their products enjoyed high brand loyalty. What I soon learned would delight and amaze me.
I called the VP, and we met two days later in the waiting room of a Mercedes dealership while his car was being serviced. He seemed very impressed with the flanges I showed him, though I had the feeling there was something he wasn't telling me-he seemed too interested. These were such simple low-tech sand castings. I sort of accepted his energy, rationalizing that it was typical to see a person's enthusiasm when they saw my inventions for the first time. But I decided to do a little digging and I am glad I did. I learned that Taco was losing money on their flanges, and were factoring that loss into the sell-price of their circulators. The negative contribution to profit stemmed from increased competition, resulting in the loss of 30% of their market share for flanges. This explained the VP's immediate enthusiasm for a new flange design.
A week had passed, and he stayed true to his word that he would arrange a meeting with Taco. I met with Taco's VP of marketing and a handful of managers at their plant. As expected, their interest level was high, and negotiations began. I was now in for an education in the art of negotiating. The pursuit of success had created immense strife in my personal life, but the pursuit of "a deal" dwarfed my earlier trials.
Negotiations weren't going the way I had naively hoped, so I decided to shop the flange around, realizing that if Taco was interested in the flanges then their competitors might be, too. They were. I discovered that they all had problems with their flanges. This seemed incredulous. It wasn't long before I was on a plane to California to meet with executives from the largest pump manufacturer in the world, Grundfos-all expenses paid. But Taco sold the greatest number of this style of threaded circulator flange in the world, over a million a year. Knowing this helped me determine the total market size, and I seriously considered supplying the market with flanges myself. I made contacts with an array of other manufacturers, Reps and potential investors. I lined up production agreements in case negotiations with the two primary companies fell through. Nonetheless, I pursued them vigorously.
The last thing Taco needed was yet another company competing against them. Therefore, they had the most to lose without my design, and the most to gain with it. They were aware that if they could regain their lost market share with a patent pending flange, a "better mousetrap", then a deal with me made a lot of sense. The fact that they produced so many flanges ensured the possibility of significant royalties for my investor and me, and I was determined to pay her back. So six months later I signed a license agreement with Taco on two flange designs, but not before asking for help one last time from the supply house president, this time with negotiations; I needed a mediator. Taco and I had reached an impasse in negotiations, but once the president agreed to mediate it took just 3 weeks to settle the deal, and the first check, ,000, was signed to my company.
Since closing the deal, Taco has replaced their old standard with my designs. The "freedom Flanges," as they've named them, are on the market, and the positive response has been nothing short of a consensus. It appears that a new standard has been created. The most often asked question is "Why didn't they do this years ago?" I wish I could collect royalties on my answer to that question. Whenever I hear that question I am reminded of an inspirational statement on a poster in my insurance agent's office: "What we can easily see is only a small percentage of what is possible. Imagination is having the vision to see what is just below the surface; to picture that which is essential, but invisible to the eye." This flange solution was a glaring example of a concept so simple that no one before me considered looking for it. The torturous route that I had taken may have been less grueling and more direct if I had given equal attention to the flange option right from the beginning. Hindsight is so clear. Is it not?
Eight months following completion of the first deal, Taco and I signed a second agreement on three valve inventions. Recently we began discussions on my latest invention ideas.
Seeking to create tools based on a flange design reminds me of the 3M Company's search for a new adhesive. When their engineer pasted a sticky substance on squares of paper, to keep his place in his church hymnal, he had created what would become the Post-It NoteÒ; as simple an idea as my flange. Another notable inventor, Norm Larson, created 39 chemical formulas to inhibit rust before his 40th proved successful: "Water displacement, 40th attempt" in other words, WD-40®. I became successful with my 30th attempt, though no comparison can be made to the 100 million dollar a year success that WD-40® has become. It seems solutions to certain problems are often discovered before they are recognized as solutions, and it can require carrying an idea through a process of elimination before the successful discovery is made. My plan wasn't to start a one-product company-one-product companies are rarely successful. Although, failing with the tools and succeeding with the flange made it apparent that the simplest designs can often be the most successful. Moreover, I knew little about the market for flanges in the beginning of my journey and didn't think I could compete with Taco's established North American distribution, even with a new flange design. Thankfully, I had come full circle with my journey and was a lot wiser for having taken the trip. With attainment of inventing wisdom my hair has begun to gray, but I no longer need that bath towel.
The invention development process doesn't have to be as difficult as it was for me. I should have done a lot more market research before spending so much money on patent applications, costly patterns and prototypes, production runs, and, generally, spinning my wheels on whimsical ideas. In a perfect world a ,000 market analysis in the beginning may have helped me choose the path of profit much sooner. I would have discovered there was far greater market potential for flanges than for flange tools. I estimate I might have saved 5,000 if I had bypassed the tool approach and gone directly with the flanges and valves, my last five inventions.
Looking back at my experiences from my present perspective as president emeritus (2000) of New Hampshire Inventors Association, I've concluded that many other inventors are going through the same kind of educational process; I see mostly failure and small successes, as most inventors will have to learn by doing and aren't prepared for what it takes to succeed. Inventors need to have an awareness of the invention development process and its pitfalls. Also, they will need to possess passion and determination and, more importantly, a marketable idea. Moreover, I know the following declaration by Thomas Edison echoes in the minds of other inventors, as it has in mine: "Had I known in advance what I was in for I would not have started!" But I did start, and I finished successfully. I pushed forth with drive and creativity I didn't know I was capable of and beat the odds. 98% of inventors fail, many of them making the same predictable mistakes that I made.
It should be noted that my invention "boot camp," and my ultimate success, would not have been possible without the ongoing faith of my investor. In exchange for her risk-taking Mary will receive a ten percent return on her total investment, plus 40% of royalties from the second license agreement. Most inventors run out of money before they succeed; I would have too if not for Mary. She was not only my Angel, but my savior during my darkest hours of seemingly imminent failure. I'm very thankful that she will be repaid.
An intangible benefit to me is that I've learned more about my capabilities and limitations through this process than through any other personal challenge. In overcoming this challenge I have found the new career path I hoped to discover. I am presently in school completing a degree in business that I started in the 80s and will continue on in engineering-I'm reinvesting my royalties. Ironically, and with any luck, I've invented products for the trade that I may never need to return to and use.